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Abstract

Should housing capital be be taxed like other forms of capital? We analyze this

question within a version of the neoclassical growth model. We derive the optimal tax

treatment of housing capital vis-à-vis business capital allowing for relatively general

household preferences. In the �rst-best, the tax treatment of business and housing

capital should always be the same. In the second-best, in contrast, the optimal tax

treatment of housing capital depends on the elasticities of substitution between non-

housing consumption, housing and leisure. This is because housing taxation may be

used to alleviate the distorting e¤ect of taxing labor. As a result, the optimal tax treat-

ment of housing capital may be di¤erent from that of business capital. We complement

these analytical results with a numerical analysis.
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1 Introduction

The tax treatment of housing is an important �scal question because housing wealth consti-

tutes a large share of all household wealth. A common view in the public �nance literature

is that housing enjoys a tax favored status in most western economies, mainly because the

return to owner housing, the imputed rent, usually goes untaxed while the return to business

capital is taxed at a relatively high e¤ective tax rate.1 Related to this, several studies have

assessed the welfare consequences of a tax reform that sets an equal tax burden on hous-

ing and business capital. Using quantitative dynamic general equilibrium models, Gahvari

(1985), Skinner (1996), and Gervais (2002), among others, have shown that such a reform

would lead to substantial e¢ ciency gains.2

While these studies show that the current tax status of housing is likely to be highly

distortionary, they do not aim to determine the optimal tax treatment of housing. Therefore,

it is not clear that taxing the return to housing capital at the same rate as the return to

business capital is always the best thing to do. In particular, because of the dual role of

housing as both an asset and a consumption good, it seems plausible that the tax treatment

of housing should depend on household preferences. In this paper, we consider housing

taxation as part of an optimal tax problem and ask under what conditions it actually is

optimal to tax the return to housing capital at the same rate as the return to business

capital.

A related question that we are interested in is how the optimal tax treatment of business

capital changes if housing capital cannot be taxed. Our motivation for this question is that

most countries simply do not have a tax on the imputed rent and suggestions to introduce

such a tax often face strong political opposition.3 This may be considered as a constraint

1See Hendershott and White (2000) for an international comparison of housing�s tax status.
2Other studies that also consider the e¢ ciency and welfare e¤ects of the tax favored status of housing

include Gahvari (1984a), Slemrod (1982), Berkovec and Fullerton (1992), Hendershott and Won (1992),

Poterba (1992), and Bye and Åvitsland (2003) and Eerola and Määttänen (2006). Turnovsky and Okuyama

(1994) focus solely on capital accumulation. See also Englund (2003) for general discussion on housing

taxation.
3Property taxes are common. However, since they are typically collected at the municipal level, their use

may be limited by local tax competition.
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that should be taken into account when designing tax reforms.

We follow the line of research represented by Judd (1985), Chamley (1986), Atkeson et al.

(1999), and others. Formally, we analyze a Ramsey problem for a government that �nances

government expenditure by a set of �at rate taxes, including a tax on the imputed rental

income from housing capital. The government is assumed to be able to commit to future

tax policies. The solution to the Ramsey problem is a tax reform which is optimal given the

initial state of the economy, individual optimization, and the available tax instruments. This

approach also allows us to take the transitionary dynamics properly into account. This is

important because the previous studies on housing taxation typically consider only steady

state e¤ects of tax reforms.4

We employ a version of the neoclassical growth model with a representative household

that derives utility from non-housing consumption, housing, and leisure. The model captures

the dual role of housing capital as an asset and a form of consumption, the intertemporal

savings-consumption decision, and the general equilibrium e¤ects of capital taxation we are

interested in. In addition to introducing housing capital and a tax on it, we extend the

most standard set-up by employing a nested constant elasticity of substitution (CES) utility

function. To the best of our knowledge, we are the �rst to consider taxation of housing capital

or durable goods as part of an optimal tax problem in a fully dynamic general equilibrium

set-up.5

We �rst brie�y discuss situations where the government has enough tax instruments to

implement the �rst-best allocation. In such a set-up, housing and business capital should be

treated equally independently of household preferences.

We then consider a standard second-best problem and show that there household prefer-

ences do matter for the optimal tax treatment of housing vis-à-vis business capital. Depending

on the elasticities of substitution between non-housing consumption, housing, and leisure, it

may be optimal to tax the imputed rent at a higher or lower rate than the return to business

4Exceptions are Skinner (1996) and Eerola and Määttänen (2006).
5Gahvari (1984b) studies the optimal taxation of housing capital in a partial equilibrium model. Cremer

and Gahvari (1998) study the optimal taxation of housing in a static model with incomplete information,

where the government may use di¤erentiated housing taxes so as to separate between di¤erent consumer

types.
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capital. This is because housing taxation is used to alleviate the distorting e¤ect of taxing

labor.

We complement our analytical results with a numerical analysis. We show, �rst of all, that

the optimal tax burden on housing capital is quite sensitive to the intratemporal elasticities

of substitution.

We also show that the dynamics of the optimal tax rate on business capital change

dramatically if housing capital cannot be taxed. In that case, the tax rate on the return to

business capital does not feature the usual dynamics with very high tax rates in the �rst

periods and a rapid convergence to the steady state level. Instead, the optimal business

capital tax rate decreases very slowly and steadily towards the steady state level. Intuitively,

if households can use housing capital as a tax free savings vehicle, taxing business capital at

a high rate would induce a large reallocation from business to housing capital which would

be undesirable. Related to this, we �nd that the welfare cost of not being able to tax housing

is quite large even in a situation where the optimal long-run tax rate on housing is zero.

We proceed as follows. In the next section we describe the economy. In section 3, we

present our analytical results. In section 4, we present and discuss our numerical results. We

conclude in section 5. In the Appendix, we derive our analytical results.

2 Model

We consider a deterministic model with an in�nitely lived representative household that

derives utility from non-housing consumption, housing services, and leisure. The production

side consists of a representative �rm that employs business capital and labor to produce

output goods which can be transformed into housing capital, business capital, and non-

housing consumption. There is a government that �nances public expenditures with �at-rate

taxes.

We do not have residential land in the model. Hence, we focus on the tax treatment of

housing capital, or residential structures, alone. The main reason is that it seems obvious

that if constructible land is in �xed supply, the government should try to e¤ectively con�scate

all land rents. In practice, this can be (at least partly) achieved with municipal monopoly
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power on land use decisions. The question why we do not usually observe land con�scation

is a very interesting one but goes beyond the scope of this paper.6

2.1 Firms

Every period t, a representative �rm employs business capital, kt, and labor, nt, to produce

output goods, yt. The production function is

yt = f(kt; nt). (1)

Production function exhibits constant returns to scale. The �rm�s �rst-order conditions

for pro�t maximization imply that the before-tax returns to business capital and labor are

determined by their marginal productivities, that is,

rt = fkt � �k (2)

wt = fnt, (3)

where �k is the depreciation rate of business capital.7 The output good may be costlessly

converted into non-housing consumption good, business capital, and housing capital.

2.2 Government

The government �nances each period amount g of public expenditures by taxing labor income

at rate �n, the return to business capital income at rate � k, and the imputed rent at rate

�h. The government budget need not be balanced on a period by period basis. Instead, the

government faces the following budget constraint:

� kt rtkt + �nt ntwt + �ht r
h
t ht + bt+1 �Rtbt � g, (4)

where bt denotes a one-period bond maturing in period t and Rt is the gross rate of return on

the bonds from period t� 1 to period t. We assume that the return to government bonds is

not taxed. This is innocuous for bond exchanges between the government and the household.

6See Aura and Davido¤ (2006) for an interesting analysis about land taxation in a static spatial model

and Davis and Heathcote (2005) for a calibrated business cycle model with housing and land.
7We denote @

@kt
f(kt; nt) = fkt and similarly for other derivatives throughout the paper.
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2.3 Household�s problem

The household is endowed with one unit of time every period. The periodic utility function

is u(c; h; n), where c is non-housing consumption, h stock of housing capital, and n labor.

The utility function is strictly increasing in non-housing consumption and housing capital

and strictly decreasing in labor, strictly concave, and to satisfy the Inada conditions. The

household has three savings vehicles: housing, business capital, and government bonds.

The maximization problem of the household in period 1 is

max
1X
t=1

�t�1u (ct; ht; nt) (5)

subject to budget constraint

ct + kt+1 + ht+1 + bt+1 =
�
1 + (1� � kt )rt

�
kt +Rtbt +Rht ht + (1� �nt )ntwt (6)

where

Rht = 1� �h � �ht r
h
t .

In the budget constraint, rh is the imputed rent (to be de�ned below) and �h is the depreci-

ation rate of housing capital. The left hand side of the constraint includes expenditures on

non-housing consumption, and investment or savings in housing, business capital and gov-

ernment bonds. The terms in the right hand side are after-tax income from business capital,

owner-housing and labor.

It is clear that in this setting investment in business capital and savings in government

bonds must have the same after-tax rate of return. This means that

Rt = 1 + (1� � kt )rt. (7)

By recursively using the budget constraints to eliminate bt terms and by taking into

account the transversality condition, the periodic budget constraints can be merged into a

single present-value budget constraint

1X
t=1

pt[ct + kt+1 + ht+1] =

1X
t=1

pt
�
Rht ht +

�
1 + (1� � kt )rt

�
kt + (1� �nt )ntwt

�
+R1b1 (8)
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where p1 and pt =
t�1Q
i=1

R�1i+1 for t > 1.
8

The �rst-order conditions characterizing individually optimal behavior may be written as

uct(1� �nt )wt + unt = 0 (9)

uct � �uct+1
�
1 + (1� � kt )rt

�
= 0 (10)

�uht+1 � uct + �uct+1R
h
t+1 = 0: (11)

2.4 Imputed rent

We de�ne the imputed rent as the user cost of housing net of depreciation and taxes. Hence,

the imputed rent is simply

rht = rt. (12)

The imputed rent can also be derived as the rental rate of housing, net of deprecation, that

would prevail if rental markets existed in this economy. This hypothetical rental rate, denoted

by rent, is determined by an arbitrage condition in the following manner. Investing one unit

of output good in business capital in period t � 1 returns 1 + (1 � � kt )rt units in period t.

One unit of output good buys one unit of housing capital. If we assume that the return to

rental housing is taxed at the same rate as the return to business capital, and that landlords

can deduct housing capital depreciation before paying the capital income tax, investing one

unit of the output good in period t� 1 in rental housing returns

rentt � � kt (rentt � �h) + 1� �h (13)

in period t. The last term in this expression is the value of the remaining housing capital

in period t. The rental rate that makes households indi¤erent between investing in business

capital and rental housing is

rentt = rt + �h. (14)

It is important to understand, however, that since we allow the tax rate on the imputed

rent to be time varying, the allocations associated with optimal tax reforms do not depend

on how exactly we de�ne the tax base in housing taxation.
8For details on the formulation of the present-value budget constraint, see e.g. Ljungqvist and Sargent

(2004, p. 482-483).
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2.5 Equilibrium

For a given sequence of tax rates, a competitive equilibrium consists of individual policies

and prices such that the individual policies solve the household�s problem in (5) and (8),

factor returns are given by equations in (2) and (3), the government budget constraint in (4)

is satis�ed with equality, and the aggregate resource constraint

ct + kt+1 + ht+1 + g = f(kt; nt) + (1� �k)kt + (1� �h)ht (15)

is satis�ed for all t.

2.6 Note on aggregation and the tax treatment of mortgages

In the household problem above, we directly imposed the general equilibrium condition that

the representative household owns the business capital stock. This conceals important issues

related to way that households �nance their housing and, in particular, the tax treatment of

mortgage interests.

However, focusing on the representative household is less restrictive than it may seem at

�rst glance. Under quite weak assumptions, the neoclassical growth model has the property

that the dynamics of aggregate variables are independent of the underlying distribution of

households over their asset holdings and labor productivities. In that case, we may assume

that behind the representative agent there is a distribution of households with very di¤erent

asset positions.

The key condition for this model economy to aggregate is that the after-tax interest rate

is the same for all households. As for the utility function, it is su¢ cient to assume that it is

homothetic.9

The after-tax interest rate being the same for all households requires in general that

mortgage interest payments are tax deductible. To see this, it is useful to rewrite the periodic

budget constraint so that it contains separately �nancial savings a � 0 and a mortgage

m � 0. Assume also that fraction �m � 1 of mortgage interest payments is tax deductible

9For a general analysis of aggregation in the neoclassical growth model, see e.g. Krusell and Ríos-Rull

(1999) or Caselli and Ventura (2000). For a housing application, see Eerola and Määttänen (2006).
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at the business capital tax rate. Then the household budget constraint de�ned in (6) can be

rewritten as

ct + at+1 �mt+1 + ht+1 + bt+1 = yt + (1� �nt )ntwt (16)

where

yt =
�
1 + (1� � kt )rt

�
at �

�
1 + (1� � kt �

m)rt
�
mt +Rtbt +Rht ht (17)

is net worth of the household in period t. It is clear that if � k 6= 0, the after-tax interest

rate is the same for those having �nancial savings and for those having a mortgage only if

�m = 1, i.e. if mortgage interest payments are fully tax deductible. When this is the case,

�nancial savings a and mortgage m can be combined into a single variable which in general

equilibrium aggregates into the capital stock.

As discussed by Gervais (2002) and others, unless mortgage interest payments are fully

tax deductible, the user cost of housing depends on whether it is �nanced with equity or

debt. To see this, assume that a household with net worth yt wishes to transfer a net worth

of yt+1 to the following period and use (17) for period t+ 1 to write

bt+1 =
1

Rt+1

�
yt+1 �

�
1 + (1� � kt+1)rt+1

�
at+1 +Rmt+1mt+1 �Rht+1ht+1

�
, (18)

where Rmt = 1 + (1� � kt �
m)rt. Plugging the above expression for bt+1 into (16), taking into

account the arbitrage condition in (7) and rearranging terms gives

ct = Yt �
� kt+1 (1� �m) rt+1

Rt+1
mt+1 �

Rt+1 �Rht+1
Rt+1

ht+1 (19)

where Yt = yt + (1 � �nt )ntwt �
yt+1
Rt+1

. This equation shows how much current non-housing

consumption the household can a¤ord given next-period net worth, housing, and mortgage.

With �m < 1, a larger mortgage reduces current consumption. Housing is then more costly

to households who �nance it with a mortgage than to households who �nance it with their

own savings. With �m = 1, the mortgage term drops out.

In short, assuming that mortgage interests are tax deductible and the utility function

is homothetic, and taking into account that we are interested in aggregate e¢ ciency alone

(captured by the welfare of the representative agent), the optimal tax policy is independent

of the initial distribution of households over their asset positions. Assuming that mortgage

interest payments are tax deductible is natural because otherwise the tax system would be

non-neutral between di¤erent ways of �nancing housing.
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2.7 Speci�cation of the preferences

For most of our analytical results, and obviously for all numerical results, we need to specify

the utility function. We consider the following nested constant elasticity of substitution

(CES) utility function.

The �rst CES aggregator, bc, is de�ned over housing capital and leisure:
bc = bc(h; 1� n) =

8<:
�
�hh


h
+ (1� �h)(1� n)


h
�1=
h

, for 
h < 1, 
h 6= 0

h�
h
(1� n)1��

h
, for 
h = 0;

where �h is the utility share of housing capital. The elasticity of substitution between housing

capital and leisure is 1
1�
h .

The second CES aggregator, ec, is de�ned over non-housing consumption and bc:
ec = ec(c;bc) =

8<:
�
�cc


c
+ (1� �c)bc
c�1=
c , for 
c < 1, 
c 6= 0�

c�
cbc1��c� , for 
c = 0;

where �c is the utility share of non-housing consumption. The elasticity of substitution

between non-housing consumption and bc is 1
1�
c .

Finally, the periodic utility function is:

u(c; h; n) � eu(ec(c;bc(h; 1� n)) =

8<: ec1��
1�� , for � > 0; � 6= 1

log(ec), for � = 1;
where � is the inverse of the intertemporal elasticity of substitution.

With 
c = 
h = 0, this utility function boils down to the commonly used Cobb-Douglas

speci�cation:

u(c; h; n) =
[c�

c
h(1��

c)�h(1� n)(1��
c)(1��h)]1��

1� �

The case with � = 1 and 
c = 
h = 0 is the logarithmic utility function:

u(c; h; n) = �c log c+ (1� �c)�h log h+ (1� �c)(1� �h) log (1� n) . (20)

These preferences are equivalent to the set-up in Greenwood and Hercowitz (1991) who
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de�ne a utility function over market consumption and �home production�and a home pro-

duction function over �home capital�and time not allocated to market work.10

3 Optimal taxation

3.1 First-best

Before studying the second-best taxation, it is instructive to consider a �rst-best problem.

As is well known, within the standard growth model the government can implement the

�rst-best allocation if it has enough tax instruments and if the present value of government

expenditures is small enough. In this subsection, we brie�y extend some results from the

previous literature to our set-up.

We note �rst that maximizing household utility subject to the aggregate resource con-

straint alone leads to the following �rst-order conditions:

unt + uctfnt = 0 (21)

uct � �uct+1 (1 + rt+1) = 0 (22)

�uht+1 � uct + �uct+1 (1� �h) = 0. (23)

These equations characterize the �rst-best allocation.

One way of implementing the �rst-best in the standard model without housing capital

is to impose a constant strictly positive tax on consumption, a constant subsidy on labor

income (i.e. �n < 0), and a zero tax on the return to business capital (see Coleman, 2000).

We next describe how this solution can be extended to our set-up. To do this, we need to

introduce a consumption tax � c that applies to both non-housing consumption goods and

housing capital (or residential construction).

10A more general formulation would allow for allocating time to �leisure�, �home production�and �market

production�. For studies using this approach, see e.g. Gomme et al. (2001), Baxter and Jerman (1999) and

McGrattan et al. (1997). The two approaches result in the same allocations under a logarithmic speci�cation.

For more discussion on this issue, see Greenwood et al. (1995).
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With a consumption tax, the household budget constraint (8) becomes

1X
t=1

pt[(1 + �
c
t) ct+kt+1+(1 + � ct)ht+1] =

1X
t=1

pt
�
Rht ht +

�
1 + (1� � kt )rt

�
kt + (1� �nt )ntwt

�
+R1b1

(24)

where

Rht = (1� �h) (1 + � ct)� �ht r
h
t .

Consider then the following tax rates for all t � 1:

� ct = ��nt = � � 0 (25)

� kt+1 = �ht+1 = 0 (26)

Deriving the household �rst-order conditions using (24), inserting the tax policy in (25) and

(26) into them, and comparing with (21)-(23) reveals that with this tax structure, the house-

hold �rst-order conditions are identical to those that characterize the �rst-best allocation.

Hence, if the tax policy in (25) and (26) is feasible, the resulting competitive equilibrium

will correspond to the �rst-best allocation. Intuitively, the government taxes initial assets

with a consumption tax and eliminates the distorting e¤ect on labor supply with a subsidy

on labor.

For this solution to be feasible, it must generate enough tax revenue. Following Coleman

(2000), it can be shown that this depends on the size of the initial aggregate capital stock

relative to the present value of government expenditures.

Another way of reaching the �rst-best allocation is to allow for immediate expensing of

investments as in Abel (2007). By denoting the investment credits for housing and business

capital by �h and �k, respectively, the household budget constraint in (8) becomes

1X
t=1

pt[ct+kt+1+ht+1] =
1X
t=1

pt
�
Rht ht + �ht I

h
t +

�
1 + (1� � kt )rt

�
kt + �kt I

k
t + (1� �nt )ntwt

�
+R1b1

(27)

where

Ikt = kt+1 � kt and Iht = ht+1 � (1� �h)ht.

Similar reasoning as above shows that the �rst-best can be implemented with constant posi-

tive tax rates on business and housing capital, a zero tax rate on labor, and investment credit
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satisfying �k = � k and �h = �h. The investment credits together with positive capital tax

rates allow the government to tax the initial capital stock without distorting the incentive to

make new investments.

In should be noted that these solutions were derived without specifying the utility func-

tion. Hence, in the �rst-best tax system housing and business capital are always treated

equally.

An important feature of these solutions is that they rely on taxing initial assets alone.

They are therefore essentially capital levies and therefore arguably politically unacceptable.

It is also likely that these tax systems do not generate enough tax revenue in countries with

a relatively large government. These considerations motivate the analysis of a second-best

tax problem.

3.2 Second-best

We now consider the second-best problem where the government does not have enough tax

instruments to e¤ectively con�scate the initial capital stocks. The objective of the government

is to maximize household welfare by announcing in the beginning of period 1 a sequence of

tax rates f�nt ; � kt+1; �ht+1g1t=1. Note that we assume, following most of the related literature,

that the government takes � k1 and �
h
1 as given. This rules out taxing past investments. We

also de�ne upper bounds � k and �h that the tax rates on the return to business capital and

imputed rent may not exceed in any period t � 2.

Following the approach taken by Chamley (1986), Judd (1985), and others, we formulate

the government�s problem so that it directly chooses allocation fct; nt; kt+1; ht+1g1t=1.11 Before

writing down the government objective, let us discuss the constraints to be imposed on the

government�s choices.

Rewriting the budget constraint of the household in (8) by using the �rst-order conditions

11As shown in Lansing (1999) and discussed in Krusell (2002), in some cases, this approach leads to

allocations that cannot be decentralised. This happens in the absence of anticipation e¤ects, that is, when

future tax rates do not a¤ect the current decisions of the private sector. In our setting this kind of anticipation

e¤ects are always present even under logarithmic utility.
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of the household gives

1X
t=1

�t�1
�
uctct + untnt + �uht+1ht+1

�
= uc1A. (28)

where A =
�
1 +

�
1� � k1

�
r1
�
k1 + Rh1h1 + R1b1. This is the so-called implementability con-

straint. It states that the allocation chosen by the government must be compatible with

individual optimization. Notice that unlike business capital, housing capital enters the im-

plementability constraint. This is because housing capital is in the utility function.

The upper bounds on the two capital tax rates are imposed as follows: First, given (10),

requirement � kt � � k means that the government is constrained to choose allocations that

satisfy

uct�1 � �uct
�
1 + (1� � k)rt

�
. (29)

Second, given (11), requirement �ht � �h translates into condition

uct�1 � �uht + �uct
�
1� �h � �hrht

�
: (30)

The Lagrangian for the government may be written as:

L =
1X
t=1

�t�1u(ct; ht; nt)

+�

" 1X
t=1

�t�1
�
uctct + untnt + �uht+1ht+1

�
� uc1A

#

+
1X
t=1

�t�1�t [f(kt; nt) + (1� �k)kt + (1� �h)ht � ct � kt+1 � ht+1 � g] (31)

+
1X
t=1

�t�1!t
�
uct � �uct+1

�
1 + (1� � k)rt+1

��
+

1X
t=1

�t�1 t
�
uct � �uht+1 � �uct+1

�
1� �h � �hrht+1

��
:

The �rst constraint is the implementability constraint. The second set of constraints contains

an aggregate resource constraint for each period. The third and fourth sets of constraints are

the restrictions on the tax rates.
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For t > 1, the �rst-order conditions for the government are:12

nt : Wnt + �tfnt +Bt�1ucnt � !t�1
�
1� � k

�
uctfknt �  t�1

�
uhnt � uct�

hfnt
�
= 0 (32)

ct : Wct � �t +Bt�1ucct �  t�1uhct = 0 (33)

kt+1 : ��t + ��t+1 (1 + rt+1)� !t
�
1� � k

�
uct+1fkkt+1 +  tuct+1�

hfkt+1 = 0 (34)

ht+1 : �Wht+1 � �t + ��t+1 (1� �h) + �Btucht+1 �  t�uhht+1 = 0 (35)

where

Bt = !t+1 � !t
�
1 + (1� � k)rt+1

�
+  t+1 �  t

�
1� �h � �hrht+1

�
Wnt = unt + �(uhntht + ucntct + unntnt + unt)

Wct = uct + �(uhctht + ucctct + uct + unctnt)

Wht = uht + �(uhhtht + uht + uchtct + unhtnt).

We also have the following Kuhn-Tucker conditions for all t � 1:

 t
�
uct � �uct+1

�
1� �h � �hrht+1

�
� �uht+1

�
= 0,  t � 0, (36)

and uct � �uct+1
�
1� �h � �hrht+1

�
� �uht+1 .

!t
�
uct � �uct+1

�
1 + (1� � k)rt+1

��
= 0, !t � 0, (37)

and uct � �uct+1
�
1 + (1� � k)rt+1

�
� 0.

The optimality conditions (32)-(37), the aggregate resource constraint (15), and the imple-

mentability constraint (28) determine the allocation, fct; nt; kt+1; ht+1g1t=1; as well as the mul-

tipliers � and f�t; !t;  tg1t=1. After an optimal allocation has been found, prices, frt;wtg
1
t=1,

are determined from equations (2) and (3). Finally, the tax rates on labor, the return to

business capital, and the imputed rental income are solved from equations (9), (10), and

(11), respectively.

By combining the steady state versions of the government �rst-order condition (34) and

the household �rst-order condition (10), it is straightforward to show that in the long run the

tax rate on the return to business capital should be zero. This is the standard Chamley-Judd

result.
12The �rst-order conditions for c1 and n1 (not shown) look somewhat di¤erent because they a¤ect the

righ-hand side of (28).
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Our interest is in comparing the optimal tax treatment of housing capital to that of

business capital not just in the steady state but also during the transition. In what follows,

we do this with two analytical results. When deriving these results, we ignore the upper

bounds on the capital tax rates, � k and �h, which are typically binding only during the �rst

periods after the optimal tax reform is announced. Hence, strictly speaking, the following

results hold starting from the �rst period when neither of these upper bounds is binding.

By using the government�s �rst-order conditions (33)-(35) and assuming that ! =  = 0,

we obtain
Wht+1

Wct+1

� (�h + rt+1) = 0. (38)

By using household�s �rst-order conditions (10) and (11), we obtain

uht+1
uct+1

=
�
1� � kt+1

�
rt+1 + �h + �ht+1r

h
t+1. (39)

Our strategy is to combine (38) and (39) in a manner that will allow us to determine the

relationship of di¤erent tax rates. In order to do that, we consider the utility function de�ned

in subsection 2.7. Details of the analysis are in the Appendix.

We obtain the following result:

Result 1 If 
c = 
h, then � kt = �ht in all periods.

In words, the result shows that for a class of utility functions that includes Cobb-Douglas

preferences, the second-best optimum can be achieved with a tax structure where the tax

rate on the imputed rent equals the tax rate on the return to business capital.

However, whenever 
c 6= 
h, the result that housing and business capital should be taxed

at the same rate breaks down. We have the following result:

Result 2 If 
c 6= 
h, then � kt 6= �ht in all periods. In addition,

i) If � = 1; 
h > 
c; and 
h > 0, then �ht < � kt in all periods:

ii) If � = 1, 
h < 
c, and 
h � 0 but close enough to zero, then �ht > � kt in all periods.

Parts i) and ii) show that the imputed rent should be taxed at a lower (higher) rate than

the return to business capital if 
h is larger (smaller) than 
c, at least when � = 1 and 
h is

not too small.
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To interpret this result, note �rst that the elasticity of substitution between housing and

leisure increases with 
h. If the elasticity of substitution between housing and leisure is high,

a small increase in the tax burden on housing leads the household to demand a lot more

leisure (which cannot be taxed). In such a situation, the tax burden on housing should be

low. However, the relevant elasticity depends also on 
c. For a �xed 
h, a higher value

of 
c means that the household is more willing to substitute both housing and leisure for

non-housing consumption. In other words, if 
c is high, a small increase in the tax burden on

housing leads the household to demand a lot less leisure. Hence, the tax burden on housing

should decrease with 
h and increase with 
c.

More generally, this re�ects the well-known result that goods that are su¢ ciently strong

substitutes for leisure should be taxed at a lower rate than other goods (see e.g. Christiansen,

1984) in order to alleviate the distortionary e¤ect of labor taxation. However, we have

not seen this result been derived before in a fully dynamic set-up. Here, alleviating the

distortionary e¤ect of labor taxation comes at the cost of distorting a dynamic investment

decision.

Technically, the reason why the optimal tax treatment of housing capital may di¤er

from that of business capital is that unlike business capital, housing capital enters the utility

function. Hence, Result 2 stems from the consumption role of housing. The fact that we have

modelled housing as owner housing is not crucial. What matters is the price of housing vis-à-

vis the price of non-housing consumption and leisure. We could equivalently introduce a �rm

that borrows from the households, invests in housing capital and rents it to the households.

Housing could then be taxed at the �rm level and the tax system would determine the cost

of housing via a zero-pro�t condition.

4 Numerical analysis

In our view, the most important questions that our analytical results leave open are the

following: First, what are the transitional dynamics of the optimal tax rates in the second-

best solution? Second, how do the dynamics change if housing cannot be taxed at all? Third,

how sensitive is the optimal long run tax rate on the imputed rent with respect to changes
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in the CES preference parameters? Fourth, what is the welfare cost of not taxing housing?

In this section, we present numerical results to answer these questions.13

4.1 Calibration

We take the model period to be one year and calibrate the model to the US economy. We

assume that the production function is Cobb-Douglas with capital share �. Greenwood et

al. (1995) have estimated the share of business capital in the production function when total

capital stock is disaggregated into housing and business capital. Based on their estimate,

we set � = 0:29. We set the depreciation rates of business and housing capital equal to the

average depreciation rates of nonresidential and residential �xed assets in 2000-08 National

Income and Product Accounts (NIPA). This implies �k = 0:061 and �h = 0:015.14

In the baseline calibration, we set 
c = 
h = 0. This is consistent with the fact that

housing expenditure share and average hours worked have been fairly constant over the last

decades in the US (Kydland, 1995). However, studies using micro data often �nd di¤erent

results.15 We will therefore conduct a sensitivity analysis with respect to both of these

intratemporal elasticity parameters. In addition, we set � = 1 so that we have the logarithmic

utility function in (20).

Based on Carey and Rabesona (Table 7.2., 2004), we set �n0 = 0:234. We further set the

initial tax rate on the imputed rent to zero, i.e. �h0 = 0. We choose the preference parameters

�, �c, �h, government consumption, g, and the tax rate on the return to business capital, � k0,

so as to match the following targets: 1) Total capital to total output ratio (k + h)=y = 2:96,

where y = k�n1�� +
�
rh + �h

�
h. 2) Housing capital to business capital ratio h=k = 0:76. 3)

13We �nd the solution to the Ramsey problem by solving the system of non-linear equations formed by

the government �rst-order conditions, the implementability constraint, the aggregate resource constraints,

and the Kuhn-Tucker constraints using the broydn�s algorithm. The Matlab programs are available from the

authors upon request.
14These depreciation rates equal the ratios of real depreciation to the real net stocks of non-residential and

residential �xed assets (private and government).
15We are not aware of a study that would have estimated the same preference structure that we have here

with micro data. However, there are a number of studies that use micro data to estimate the elasticity of

substitution between housing and non-housing consumption. These studies tend to �nd that elasticity to be

quite small. See for instance Siegel (2005) and Flavin and Nagazawa (2008).
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Government consumption to total output ratio g=y = 0:19. 4) Labor supply n = 0:33. 5)

Government budget is balanced and there is no government debt.

The �rst three targets are based on NIPA. The �rst is the ratio of �xed assets (private and

government) to GDP and the second is the ratio of residential �xed assets to non-residential

�xed assets. The third target is the ratio of government consumption expenditures and gross

investment to GDP.16 The fourth target means that the representative household uses one

third of its time endowment working. All the parameter values are collected in Table 1.

Table 1: Baseline calibration.

Parameter Value De�nition

Preferences � 0:942 Discount factor

�c 0:296 Consumption share parameter

�h 0:128 Housing share parameter


c 0 CES parameter


h 0 CES parameter

� 1 Intertemporal elasticity parameter

Technology � 0:290 Business capital share

�k 0:061 Depreciation rate of business capital

�h 0:015 Depreciation rate of housing capital

Tax system �n0 0:234 Initial labor tax

�h0 0 Initial tax rate on the imputed rent

� k0 0:308 Initial tax rate on the return to business capital

g 0:096 Government expenditures

4.2 Transitionary dynamics

In this subsection, we display the optimal dynamic tax reform in the baseline calibration.

We also illustrate how it changes if the imputed rent cannot be taxed. In that case, we set

�h = 0. Figure 1 shows the paths of the optimal tax rates. Period 0 corresponds to the initial

steady state. The tax rate paths in the left hand side of the �gure correspond to the case

where the imputed rent can be taxed. Here we have set the upper bounds for the two capital

16All these targets are the average ratios for 2000-08.
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tax rates at 1, that is, � k = �h = 1.17 The tax rate paths in the right hand side correspond

to the case where the imputed rent cannot be taxed.
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Figure 1: Optimal tax rates with (left) and without (right) the possibility to tax the imputed rent.

Consider �rst the case where the imputed rent can be taxed. From the analytical results

we know that the tax rates on the return business capital and on the imputed rent should

be equal in all periods. The �gure shows that the upper bounds imposed on these tax rates

are binding during the �rst three periods. After that, both tax rates converge to zero in two

periods.

Interestingly, if the imputed rent cannot be taxed, the dynamics of the optimal tax rate

on the return to business capital are very di¤erent in two respects: First, the tax rate now

starts to diminish from period 2 onwards and the upper bound � k � 1 is never binding.

17This is a natural upper bound for �k since the after-tax return to business capital would become negative

with �k > 1. In such a case, investors would refuse to hold any business capital. However, there is no such

natural upper bound for �h. This is because households should always be willing to hold some housing capital

as long as the marginal utility of housing goes to in�nity when housing goes to zero.
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Second, the tax rate on the return to business capital converges to zero very slowly. In fact,

it appears to converge to zero only asymptotically. In other words, if the tax burden on

housing cannot be adjusted, the tax rate on the return to business capital does not feature

the usual dynamics with very high tax rates in the �rst periods and a rapid convergence to

the new steady state tax rate. Intuitively, if households can use housing capital as a tax free

savings vehicle, taxing business capital stock at a very high rate becomes undesirable because

it would induce a large reallocation from business to housing capital.

4.3 Elasticities and the optimal long-run tax system

We know from result 2 that the optimal tax rate on the imputed rent di¤ers from the

optimal tax rate on the return to business capital whenever the intratemporal elasticity

parameters 
c and 
h are not equal. We now illustrate the quantitative importance of this

result by reporting the optimal long run tax rate on the imputed rent with di¤erent values

for these two parameters. We consider values of -1 and 1/3 which correspond to elasticities

of substitution equal to 0.5 and 1.5, respectively. When changing these parameters, we

recalibrate parameters �, �c, �h, g, and � k0 so as to match the same targets as in the baseline

calibration.18

In table 2, we display the optimal long run tax rates on the imputed rent and labor. The

optimal long run tax rate on the return to business capital is always zero.

The optimal tax rate on the imputed rent varies with the elasticity parameters. In the

table, the tax rate ranges from -0.24 to 0.57. The extreme cases are those where the di¤erence

between 
c and 
h is the largest. Hence, the optimal tax burden on housing is quite sensitive

to household preferences.

Table 2: Long run tax rates.

18In fact, � remains constant when we vary the elasticity parameters.
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Calibration �h �n


c = 0; 
h = �1 0.33 0.20


c = 0; 
h = 0 0.00 0.23


c = 0; 
h= 1=3 -0.11 0.24


c = �1; 
h = 0 -0.18 0.26


c = 0; 
h = 0 0.00 0.23


c = 1=3; 
h = 0 0.16 0.21


c = �1; 
h = 1=3 -0.24 0.27


c = 1=3; 
h = �1 0.57 0.17

4.4 Welfare e¤ects

Finally, we consider the welfare e¤ects of optimal tax reforms. Our welfare measure is

the �equivalent consumption variation�. It tells how much non-housing consumption should

be increased in the initial steady state (keeping housing and leisure �xed) so as to make

the household indi¤erent between the status quo and the equilibrium associated with a tax

reform. We compare the welfare gains of optimal tax reforms with and without the possibility

to tax the imputed rent. The di¤erence between these two welfare gains gives us a measure

of the welfare cost associated with the inability to tax housing. We compute two welfare

e¤ects: An overall welfare e¤ect that takes the transition periods into account and a steady

state welfare e¤ect that is based on comparing utility in the initial steady state to the utility

in the new steady state.

With the baseline calibration, the welfare gain from an optimal dynamic tax reform is

1.8%. The steady state e¤ect is 8.7%. The reason why the steady state welfare gain is much

larger than the overall welfare gain is that aggregate capital stock increases with the optimal

tax reform. Following the tax reform, the savings rate initially increases.

The overall welfare gain of the optimal tax reform falls to 0.7% and the steady state e¤ect

to 4.8% if the tax rate on the imputed rent is constrained to be zero. In other words, the

welfare gain falls by about 50% if the imputed rent cannot be taxed. In this sense, the cost

of not being able to tax the imputed rent is very large. This is perhaps surprising given that

the initial tax burden on housing (with �h0 = 0) is the same as the optimal tax burden in the
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new steady state. The reason for the large reduction in the welfare gain is imposing high tax

rates on the return to business capital during the �rst periods of the reform becomes very

distorting when households can use housing capital as a tax free savings vehicle.

5 Conclusions

We have considered the optimal tax treatment of housing capital within a version of the

neoclassical growth model. In the �rst best, the tax treatment of housing and business capital

should be the same. For a class of utility functions that includes the standard Cobb-Douglas

function, also the second-best optimum calls for taxing the imputed rent at the same rate as

the return to business capital. More generally, however, the optimal tax burden on housing

depends on the elasticities of substitution between housing, non-housing consumption, and

leisure.

Our numerical results suggest that the optimal tax treatment of housing capital is indeed

quite sensitive to household preferences. This means that the optimal tax rate on the imputed

rent may depart substantially from the optimal tax rate on the return to business capital.

We also found that the dynamics of optimal capital tax reforms are very di¤erent if the tax

burden on housing cannot be adjusted.
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Appendix

In this appendix, we derive Results 1 and 2. Throughout we assume that the upper bounds

for the tax rates on the imputed rent and the return to business capital are not binding, that

is ! =  = 0. For convenience, we drop time indices.

We �rst prove the following lemma.
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Lemma 1 If 
c = 
h, then
Wh

Wc

=
uh
uc
:

where

Wc = uc + �(uhch+ uccc+ uc + uncn) (A1)

Wh = uh + �(uhhh+ uh + uchc+ unhn). (A2)

Proof. We have to consider di¤erent cases depending on the parameter values in the utility

function. Note �rst that for � 6= 1, 
c = 
h 6= 0, the utility function we employ may be

written as

u(c; h; n) =

�
�cc


c
+ (1� �c)

�
�hh


h
+ (1� �h)(1� n)


h
�
c=
h�(1��)=
c

1� �

� S (c; h; n)
1��

c

1� �

where S (c; h; n) = �cc

c
+ (1� �c)

�
�hh


h
+ (1� �h)(1� n)


h
�
c=
h

. The partial derivatives

of the utility function can then be written using the partial derivatives of S as follows:

ui =
1


c
S'Si for i = c; h; n (A3)

uij =
1


c
'S'�1SiSj +

1


c
S'Sij = ui

�
'
Sj
S
+
Sij
Si

�
(A4)

= uj

�
'
Si
S
+
Sij
Sj

�
for i; j = c; h; n

where ' = 1��

c
� 1. The partial derivatives of S are

Sc = 
c�cc

c�1

Scc = Sc (

c � 1) c�1

Sh = 
c(1� �c)D
c=
h�1�hh

h�1

Shh = Sh

h�

c � 
h

�
D�1�hh


h�1 +
�

h � 1

�
h�1
i

Sn = �
c(1� �c)D
c=
h�1 �1� �h
�
(1� n)


h�1

Sch = Scn = 0

Shn = �ShD�1 �
c � 
h
� �
1� �h

�
(1� n)


h�1
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where D = �hh

h
+ (1 � �h)(1 � n)


h
. Plugging the partial derivatives of u into (A1) and

(A2) and rearranging gives:

Wc = uc + �uc

�
'F

S
+ 1 +

Sccc

Sc
+
Scnn

Sc
+
Schh

Sc

�
Wh = uh + �uh

�
'F

S
+ 1 +

Shhh

Sh
+
Shnn

Sh
+
Schc

Sh

�
where F = Scc+Snn+Shh. Plugging the partial derivatives of S into the above expressions

allows us to write:

Wc = uc

�
1 + �

�
'F

S
+ 
c

��
(A5)

Wh = uh

"
1 + �

 
'F

S
+ 
h +

�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h

!#
(A6)

From equation (A6) it follows that if 
c = 
h,

Wh = uh

�
1 + �

�
'F

S
+ 
h

��
:

Therefore, if 
c = 
h, (A5) and (A6) imply that

Wh

Wc

=
uh
uc
.

Hence, we have proved Lemma 1 for the case where � 6= 1 and 
c = 
h 6= 0. When � = 1

and 
c = 
h 6= 0,

u(c; h; n) =
1


c
logS

It is clear that the above result applies in this case, because equations (A3)-(A4) and the

analysis thereafter remain valid. Consider then the case where 
c = 
h = 0 and � = 1. The

utility function is then

u(c; h; n) = �c log c+ (1� �c)�h log h+ (1� �c)(1� �h) log (1� n) :

Plugging the partial derivatives of u into (A1) and (A2) leads to

Wc = uc and Wh = uh
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and therefore Lemma 1 applies. Finally, consider the case where � 6= 1 and 
c = 
h = 0. In

this case

u(c; h; n) =

h
c�

c
h�

h(1��c)(1� n)(1��
h)(1��c)

i1��
1� �

�
eS (c; h; n)1��
1� �

where eS = c�
c
h�

h(1��c)(1� n)(1��
h)(1��c). Then

ui = eS�� eSi for i = c; h; n

uij = �� eS���1 eSi eSj + eS�� eSij = ui

"
�� eS�1 eSj + eSijeSi

#
for i; j = c; h; n

Proceeding as above we can write

eSc = �cc�1 eSeSh = �h(1� �c)h�1 eSeSn = �(1� �h)(1� �c) (1� n)�1 eSeScc = �cc�1 eSc � c�1 eSceShh = �h(1� �c)h�1 eSh � h�1 eSheSch = �h(1� �c)h�1 eSc = �cc�1 eSheScn = �(1� �h)(1� �c) (1� n)�1 eSceShn = �(1� �h)(1� �c) (1� n)�1 eSh
Plugging these expressions into (A1) and (A2) we have

Wc = uc + �uc

 
�� eFeS + �c + �h(1� �c)� (1� �h)(1� �c) (1� n)�1 n

!
and

Wh = uh + �uh

 
�� eFeS + �c + �h(1� �c)� (1� �h)(1� �c) (1� n)�1 n

!
.

where eF = eScc+ eSnn+ eShh. Again, Wh

Wc
= uh

uc
. We have now proved Lemma 1.

Proof of Result 1. Assume now that 
c = 
h. By using Lemma 1 we can write equation

(38) as
uh
uc
= �h + r.
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Inserting this expression into (39) gives

�h + r =
�
1�

�
1� � k

�
r � (1� �h)

�
+ �hr

,

�h + r =
�
1� � k

�
r + �h + �hr

This proves Result 1.

In order to prove Result 2 we �rst prove the following lemma:

Lemma 2. If 
c 6= 
h, then
Wh

Wc

=
uh
uc

G

C
(A7)

where

G = 1 + �S:�1

 
'F + S
h + S

�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h

!
and

C = 1 + �S:�1 ('F + S
c) .

Because 
c 6= 
h, it follows that
G

C
6= 1 (A8)

In addition, when � = 1,

G > 1 if 
h > 
c and 
h � 0

0 < G < 1 if 
h < 
c, 
h � 0, and 
h is not too small.

Proof. Equation (A7) follows directly from equations (A5) and (A6). We use the expressions

for partial derivatives for u and S from Lemma 1 in order to write

G

C
= 1,

S
h + 'F + S
�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h
= S
c + 'F ,

S
�

h � 
c

�
+ 'F + S

�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h
= 0,

�

h � 
c

� �
�hh


h

+ (1� �h)(1� n)

h
��1

(1� �h)(1� n)

h

�
1 +

n

1� n

�
= 0
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Clearly, the above equation is only satis�ed when 
h = 
c. Hence, 
c 6= 
h implies that
G
C
6= 1.

In order to determine the sign of G note �rst that if � = 1, then ' = �1. Therefore we

can write G as

G = 1 +
�

SD

h
DS
h �DF + S

�

c � 
h

� �
�hh


h �
�
1� �h

�
(1� n)


h�1n
�i

where D = �hh

h
+ (1� �h)(1� n)


h
. We then proceed by simplifying the expression inside

the brackets. We �rst write F as

F = Scc+ Snn+ Shh

= 
c�cc

c�1c� 
c(1� �c)D
c=
h�1 �1� �h

�
(1� n)


h�1n+ 
c(1� �c)D
c=
h�1�hh

h�1h

= 
c
h
�cc


c

+ (1� �c)D
c=
h�1
�
�hh


h �
�
1� �h

�
(1� n)


h�1n
�i

After using the above expression for F and the expression for S from Lemma 1 and rear-

ranging terms we get

G = 1 +
�(1� �h)(1� n)


h

SD

�
1

1� n

���

h � 
c

�
�cc


c

+ 
h(1� �c)D
c=
h
�

(A9)

This means that a su¢ cient condition for G > 1 is that 
h > 
c and 
h � 0. In addition,

0 < G < 1 if 
h < 
c, 
h � 0, and 
h is not too small. The exact threshold for 
h depends,

among other things, on the value of � (the multiplier of the implementability constraint).

This proves Lemma 2.

Proof of Result 2. Assume now that 
c 6= 
h. Plugging (38) and (39) into (A7) gives

�h + r =
��
1� � k

�
r + �h + �hr

� G
C
,

�h � � k =

�
1 +

�h
r

��
C

G
� 1
�

(A10)

By Lemma 2, 
h 6= 
c implies that C
G
6= 1. Therefore, from (A10) it follows that �h 6= � k if


h 6= 
c.

We will prove part i) of Result 2 by showing that assumptions 
h > 
c and 
h � 0 imply

that C
G
< 1. From (A10) it then follows that �h � � k < 0. By Lemma 2, we know that

assumptions 
h > 
c and 
h � 0 imply that G > 0. Therefore

C

G
< 1, G > C
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By using the expressions for F and S from Lemma 1 and 2 and rearranging we get the

following:

G > C ,

1 + �

 

h +

'F

S
+
�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h

!
> 1 + �

�

c +

'F

S

�
,


h +
�

c � 
h

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h
> 
c ,


h � 
c �
�

h � 
c

� �hh
h � �1� �h
�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h
> 0,

�

h � 
c

� "
1�

�hh

h �

�
1� �h

�
(1� n)


h�1n

�hh
h + (1� �h)(1� n)
h

#
> 0,

�

h � 
c

�
(1� �h)(1� n)


h

�
1 +

n

1� n

�
> 0 (A11)

Hence G > C. This proves part i) of Result 2.

We will prove part ii) of Result 2 by showing that assumptions 
h � 0, 
h < 
c and 
h not

too small imply that C
G
> 1. By (A10), it then follows that �h � � k > 0. By Lemma 2, we

know that in this case 0 < G < 1 and therefore

C

G
> 1, C > G.

In addition, (A11) implies that

G < C ,
�

h � 
c

�
(1� �h)(1� n)


h

�
1 +

n

1� n

�
< 0

Therefore, C > G. This proves part ii) of Result 2.
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